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Abstract—Drilling operations face with three types of vibra-
tions – torsional, axial and lateral, which are coupled oscillations
that occur from the interaction of the drillstring with the rock at
the bottom of the borehole. The paper focuses on the numerical
and computational modeling of the axial vibrations of a drilling
system, considering the case of distributed parameters as being
tight connected with the physical description of these phenomena
and providing high accuracy of system behavior. The system is
modeled by hyperbolic partial differential equations with control
and perturbation input signals. The computational solution is
derived by means of a well-structured procedure which relies
on a “convergent Method of Lines” – a semianalytical method
used to transform the infinite dimensional system in a finite
dimensional one. The computational issues are then tackled via
the paradigm of cell-based neural networks which exploit the
peculiarities of the approximate system previous obtained. The
numerical simulations allow a better understanding of the system
dynamics regarding its transient and long-term behavior.

Index Terms—Distributed parameter systems, hyperbolic par-
tial differential equations, computational modeling, drillstring
axial vibrations, drillstring

I. INTRODUCTION

The complex coupled oscillations which occur in drilling
operations are the main cause of loss of performance and
equipment failure in oil extraction industry, leading to perma-
nent costs but also to permanent research efforts for modeling,
analyzing and control such undesirable phenomena.

Drilling operations face with three types of vibrations –
torsional, axial and lateral – coupled oscillations that occur
from the interaction of the drillstring with the rock at the
bottom of the borehole [1]. More specifically, the undesirable
phenomena that occur in the drilling process may be classified
as follows:

∙ vibrations – phenomena occurring along the drillstring,
as combined torsional, axial and lateral oscillations, each
of them having a specific signature in equipment depre-
ciation;

∙ phenomena occurring from the interaction of the bit with
the rock:

– the stick-slip phenomenon due to the rotation motion,
with a drastic variation of the angular velocity of the
bit (connected with the torsional vibrations),

– the bit-bounce phenomenon due to the longitudinal
(axial) motion, with a drastic variation of the weight
on the bit at the bit-rock interface (connected with
the axial vibrations),

– bending motion due to the out-of-balance of the
drillstring (connected with the lateral vibrations).

The vibrations of drilling plants are studied as coupled
oscillations or as cascaded effect of these dynamics, the
most analyzed models being those of the combined torsional
and axial vibrations, but also those of decoupled torsional
vibrations. These phenomena can be studied on different types
of mathematical models, such as lumped parameter models,
distributed parameter models, functional differential equations
of neutral type as well as coupled PDEs-ODEs models [2],
[3], [4], [5].

In this paper we focus on the model of axial vibrations
for a drilling plant subjected to control and perturbation
input signals. More specifically, we address here the issue
of an accurate description of the physical phenomenon as
well as of the system behavior by means of its computational
model derived for the mathematical model with distributed
parameters. Worth mentioning here that, since axial dynamics
is driven by the torsional one, it is less studied as a decou-
pled dynamics, especially within the framework of distributed
parameter systems (DPS).

For systems with distributed parameters arisen from differ-
ent engineering applications and industry processes, the com-
plexity of the mathematical models does not allow obtaining
the analytical solution which enables a better understanding
of the underlying behavior. In such cases, the solution derived
through numerical approaches can give an insight on the
real phenomena only if the methods and procedures used for
obtaining the computational solution are such that they ensure
convergence as well as the preservation of the basic properties
of the “true” solution, but also of its Lyapunov stability.
On the other hand, the computational implementations of
systems with distributed parameters can lead to undesirable
results due to numerical instability and systematic errors, but
also to computation difficulties related to time and resources
consuming due to a great computing effort [6].

In order to cope with these issues, we shall use here the
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computational procedure introduced in [7] by the first author of
this paper. This procedure employs the regularity and sparsity
of the approximate system, obtained via a specific approach
of the Method of Lines” (MoL), in order to perform compu-
tation by means of some well-structured devices belonging to
Artificial Intelligence field.

The rest of this contribution is organized as follows: Section
2 introduces the mathematical model for the axial vibrations of
a drilling mechanism and state the problem; Section 3 concerns
the numerical and computational modeling; Section 4 discuss
the results of simulations; some conclusions are presented in
the last section.

II. THE MATHEMATICAL MODEL AND PROBLEM

FORMULATION

From the mathematical modeling point of view, the impor-
tant components of a drilling process are: (1) the drillstring,
which consists of drill pipe and bottom hole assembly (BHA)
and (2) the drilling fluid (the so-called mud). While the
drilling mud is responsible for bit cooling and lubricating as
well as for ensuring the necessary hydrostatic pressure and
maintaining the wellbore stability, the penetration of the rock
is the combined result of a rotation motion of the drillstring
controlled by the rotary table motor at the top end of the
wellbore and of a longitudinal translation motion towards the
bottom end of the wellbore due to the BHA which provides
force to the bit in order to break the rock.

In this paper, we consider the distributed parameter model
for the axial vibrations of a drillstring viewed as a flexible rod,
the case of negligible distributed damping. The usual infinite
dimensional model for reproducing the oscillatory dynamics
is the wave equation. By denoting z(s, t) – the longitudinal
displacement of a drillstring of length L, the mathematical
model is a second-order one-dimensional (1D) hyperbolic
partial differential equation (hPDE) of the form [4], [8]:

∂2z
∂t2 (s, t) = α2 ∂2z

∂s2 (s, t), t ≥ 0, 0 < s < L (1)

with the boundary conditions (BCs)

EΓ
∂z
∂s

(0, t) = β
∂z
∂t
(0, t)− fa(t)

EΓ
∂z
∂s

(L, t) =−mb
∂2z
∂t2 (L, t)− fp(t)

(2)

where s= 0 corresponds to the top end of the drillstring, while
s = L refers to the bottom end of the drillstring.

The notations for parameters are: E – Young modulus, Γ
– cross-section of the drillstring, α =

√
E
ρa

with ρa – mass

density of the string, β – viscous friction coefficient, mb –
BHA mass. In the case of decoupled axial dynamics, the forces
acting on the boundaries of the drilling system are as follows:

∙ the boundary s = 0:

– the active force, which is a penetration force

fa(t) = β(ua(t)− v̄a) (3)

with:

– ua(t) – the stabilizing controller for axial vi-
bration damping and eliminating the bit-bounce
phenomenon

– v̄a – the reference axial velocity;

∙ the boundary s = L:

– the perturbation force, which is a torsional frictional
force that occurs at the bit-rock interface; it is a
function of the angular velocity of the bit θ̇b(t) :=
∂θ
∂t (L, t), i.e.

fp(t) = µT (θ̇b(t)) (4)

with:

– µ – a parameter which depends on the friction
coefficient at the bit-rock interface and on the bit
geometry [1], [9]

– T (⋅) the bit-rock frictional torque of the form [10]:

T (θ̇b(t)) =
2pkθ̇b(t)

θ̇b(t)2 + k2
, p > 0, k > 0 (5)

where, p – friction force amplitude and k – constant of
the friction top angle.

For improving the numerical conditioning, we write system
(1)–(2) with respect to the normalized length of the drillstring
x = s/L

∂2z
∂t2 (x, t)−

α2

L2

∂2z
∂x2 (x, t) = 0, t ≥ 0, 0 < x < 1 (6)

EΓ
L

∂z
∂x

(0, t) = β
∂z
∂t
(0, t)− fa(t)

EΓ
L

∂z
∂x

(1, t) =−mb
∂2z
∂t2 (1, t)− fp(t).

(7)

Consider the system of axial vibrations (6)–(7). In order to
have a good representation of the system behavior, the aim of
this paper is to obtain accurate numerical and computational
models, i.e., models that ensure the preservation of the basic
properties (existence, uniqueness and data dependence) of the
“true” solution, and also the preservation of the Lyapunov
stability of this solution.

III. NUMERICAL AND COMPUTATIONAL MODELING

In the sequel we shall make use of the computational
procedure introduced in [7]. As a result which lies at the
interface between the fields of Computational Mathematics
and Artificial Intelligence, this procedure relies on a “con-
vergent Method of Lines” for performing numerics and on
the paradigm of cell-based dynamical neural networks for
computational implementation. Mentioning that the Method
of Lines is more a guide for solving PDEs than a specific
procedure, we emphasize that the approach of MoL we use in
our procedure ensures from the beginning the aforementioned
requirements of the Numerical Mathematics field point of
view [11] as well as that of the augmented validation [12]
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which additionally includes the requirement for fulfilling the
“inherent” stability of the Cetaev’s postulate.

From the point of view of Neural Mathematics – a new
branch of Computational Mathematics, the procedure is de-
voted to the formalized problem solution for the class of
(possibly nonlinear) distributed parameter systems (DPS) mod-
eled by second-order 1D hPDE with “nonstandard boundary
conditions” which may include: systems of ODEs, derivative
BCs and even BCs described by some nonlinear Voltera
operators [11].

Consider the system for the drillstring axial vibrations (6)–
(7). We introduce the distributed variables v(x, t) = ∂z

∂t (x, t)
and w(x, t) = ∂z

∂x (x, t) in order to obtain for the hPDE (6) the
symmetric Friedrichs form which reads as

∂v
∂t
(x, t)− α2

L2

∂w
∂x

(x, t) = 0, t ≥ 0, 0 < x < 1

∂w
∂t

(x, t)− ∂v
∂x

(x, t) = 0

(8)

This form further leads, via diagonalization, to the normal
hyperbolic form of the Riemann invariants, used here for
decoupling the system equations. The boundary conditions (7)
written with respect to the new variables read as

EΓ
L

w(0, t) = βv(0, t)− fa(t)

EΓ
L

w(1, t) =−mb
∂v
∂t
(1, t)− fp(t).

(9)

To equations (8)–(9) we add the initial conditions (ICs)

v(x,0) = v0(x), w(x,0) = w0(x), x ∈ [0,1] (10)

and finally obtain a mixed initial-boundary value problem for
hyperbolic PDEs.

Now, by taking into account the eigenvalues ±λ = ±α/L
of the system matrix in (8), we derive the PDEs in the
normal form of the Riemann invariants r+(x, t) and r−(x, t)
(see Section 3.3 in [7]) defined by⎧⎨

⎩
r+(x, t) = v(x, t)+λw(x, t)

r−(x, t) = v(x, t)−λw(x, t)
(11)

with the converse representation⎧⎨
⎩

v(x, t) = 1
2 (r

+(x, t)+ r−(x, t))

w(x, t) =− 1
2λ (r

+(x, t)− r−(x, t)).
(12)

As already mentioned, the system of hyperbolic PDEs with
respect to the Riemann invariants is completely decoupled; it
reads as

∂r+

∂t
(x, t)+λ

∂r+

∂x
(x, t) = 0, t ≥ 0, 0 < x < 1

∂r−

∂t
(x, t)−λ

∂r−

∂x
(x, t) = 0

(13)

where we denoted r+(x, t) the forward wave and r−(x, t) the
backward wave. From the BCs (9) we obtain the expressions
for the top and bottom ends of the drillstring, expressions
which link the two waves r±(x, t) and which will be further
used in the approximate system (15) for their corresponding
state variables

r+(0, t) = br−(0, t)+ c(ua(t)− v̄a)

∂r−

∂t
(1, t) =−∂r+

∂t
(1, t)+ er+(1, t)− er−(1, t)−g fp(t)

(14)
where the notations are

a = Γ
√

Eρa, b =
a−β
a+β

, c =
2β

a+β
, e =

a
mb

, g =
2

mb
.

Following the line of [7], we apply to system (13)–(14) the
specific approach for a convergent MoL. Thus, we consider the
discretization h= 1/N of [0,1] – the interval of variation of the
independent space variable x and then use in (13) the Courant-
Isaacson-Rees rule for approximating the derivatives of the
Riemann invariants with respect to x. Next, we introduce the
approximate functions σ±

i (t) ≈ r±(xi, t), i = 0,N and, taking
into account the BCs (14), we finally obtain an initial value
problem for a system of ODEs which approximates the initial-
boundary value problem for the system of hyperbolic PDEs
(8)–(9)–(10). To conclude, in this manner we associated to
the infinite dimensional system (1)–(2) the finite dimensional
system which reads as follows

⎧⎨
⎩

σ̇+
1 (t) = bdσ−

0 −dσ+
1 − cdua(t)+ cdv̄a

σ̇+
i (t) =−dσ+

i +dσ+
i−1, i = 2,N

σ̇−
i (t) = dσ−

i+1 −dσ−
i , i = 0,N −1

σ̇−
N =−dσ+

N−1 +(d + e)σ+
N − eσ−

N −g fp(t)

(15)

where d = αN/L.
Worth mentioning here that, from the mathematical point of

view, the correct application of these steps of the procedure
ensures the good properties for the approximate system con-
cerning the convergence of the approximate solution to the
“true” (or analytical) one as well as the preservation of the
basic properties of this “true” solution including its Lyapunov
stability.

In order to reduce the rounding errors, the number of
numerical integrations and thus the computational time, the
above system will be implemented by means of the paradigm
of cell-based neural networks – nonlinear dynamical systems
build up of a (possibly) huge number of cells. The CNNs are
well-structured computational structures which can be casted
in different topologies such as one-, two- or three-dimensional
arrays of cells – to give a few examples. These structures,
belonging to the Artificial Intelligence field, allow different im-
plementations such as software, combined hardware-software
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as well as hardware implementations. We shall use here the
software emulation of such structures.

The elementary computing unit – the cell – is characterized
by local interconnections with the neighboring cells, different
types of inputs and a piecewise-linear activation function.
More precisely, in the case of Cellular Neural Networks
(CNNs), the canonical equation for a cell i within an one-
dimensional array of cells of dimension M, reads as [13] (see
also [6], [14]):

ẋi(t) = ∑
j∈Nr(i)

T A
i j f (x j)+ ∑

j∈Nr(i)

T B
i j u j + ∑

j∈Nr(i)

TC
i j x j + Ii (16)

with the notations [13]: xi – the ith cell state variable, Nr(i)
– the r-neighborhood of interactions for the ith cell, u j – the
control variable from Nr(i), T A

i j – an element of the feedback
cloning template TA, T B

i j – an element of the control cloning
template TB, TC

i j – an element of the state feedback cloning
template TC, Ii – a bias or an external stimulus. The nonlinear
function f : ℝ→ℝ is the unit bipolar ramp function described
by [13]:

f (x) =
1
2
(∣x+1∣− ∣x−1∣), (17)

i.e., a continuous, bounded, nondecreasing, piecewise-linear
and globally Lipschitzian function, with the Lipschitz constant
L = 1, verifying also [6]

0 <
f (x)

x
≤ L, f (0) = 0. (18)

In view of the above ideas and tools, in order to cast
system (15) in a cell-based structure and to yield the “cloning
templates”, a flow diagram suggests the rearrangement given
by the following state vector y ∈ ℝ

2N+1

y = [σ+
1 σ+

2 . . . σ+
N σ−

N σ−
N−1 . . . σ−

1 σ−
0 ]

T . (19)

Consequently, by comparison of these equations with the
canonical equation (16), we obtain the description of the
software emulated CNN used for implementation. Thus, the
state cloning template

TC = [0 d −d] (20)

is used for computing the dynamics of 2N −1 inner cells i =
3,N ∪N +2,2N +1, i.e.,

ẏi = [0 d −d]

⎡
⎣ yi−2

yi−1

yi

⎤
⎦ . (21)

In this case, only three state templates are different from
(20), those written for the corner cells of the interconnection
(system) matrix. The cells dynamics is without inputs from
the neighboring cells, thus T B = 0. Also, we can identify the
bias I11 = −cdv̄a and two external stimuli I12 = cdua(t) and
IN =−2g fp(t).

The main advantage introduced by the underlying “philos-
ophy” of the Method of Lines relies on the existence of many

and specific high performance commercial ODEs solvers used
for numerical integration with respect to the time independent
variable. Moreover, this fact ensures a finer discretization with
respect to the time variable than that for the space variable,
leading to a low number of numerical integrations. Having
at our disposal the approximate solutions σ±

i (t), i = 0,N
for the Riemann invariants r±(x, t), x ∈ [0,1], t ≥ 0, we can
then reconstruct the space-time evolution of the distributed
variables v(x, t) and w(x, t) by using the inverse transformation
(12) – more precisely, we obtain the approximate functions
νi(t)≈ v(xi, t) and ωi(t)≈ w(xi, t) for i = 0,N.

The efficiency of the procedure can be also discussed from
the point of view of the computational issues. We can conclude
that in this case, the number of numerical function evaluations
is only 4, and this is true regardless of the magnitude of dis-
cretization points N. Consequently, this fact leads to reduced
computational effort and, thus, computational time as well as
to reduced cumulated rounding errors.

IV. SIMULATION RESULTS

Considering the finite-dimensional approximate system
(15), several simulations were performed by using the software
environment, MATLAB. In order to cope with the stiffness
issues and to exploit the sparsity of the interconnection matrix,
the numerical integrations were performed by using the ode15s
solver for N = 10 discretization points of the interval [0,1].

The simulation values for the system parameters are as
follows [1]: L = 1172 m, E = 200 × 109 N m−2, Γ =
35 × 10−4 m2, mb = 37278 kg, ρa = 2000 N m s, β =
200.025 kg s−1. Also, we assumed the system is subjected
to constant angular and axial velocities, i.e. ω̄ = 10 rad s−1

and v̄a = 0.1 m s−1. For the forces acting at the two ends of
the drillstring, the following assumptions were made:

∙ The active force fa given in (3) with the control ∣ua∣ ≤ ūa,
as a function of the axial displacement of the bit

ua(t) = Kaw(1, t) =−LKa

2α
(σ+

N −σ−
N ) (22)

with the proportional factor Ka = 235.
∙ The perturbation force fp is a slow damped signal with

the shape depicted in Fig. 1 (in accordance with the
results and descriptions in [1], [3]) and described by (4)
with µ = 257 m−1, p = 300 and k = 0.3; in order to
mimic the oscillatory behavior of angular velocity of the
bit (torsional vibrations), we used here

θ̇b(t) = 0.2
e−ξω̄t√
1−ξ2

sin

(
ω̄t

√
1−ξ2

)
(23)

with ξ = 0.03.

Analyzing the graphical representations presented in this
section, firstly one can easily observe the initial oscillatory
behavior for both distributed variables, axial velocity v(x, t)
and axial deviation w(x, t), as a consequence of the pertur-
bation fp(t) due to the simulated torsional vibrations at the
bit level. Figs. 2 and 3 show the oscillatory behavior at the
level of the bit-rock contact surface. Moreover, the bit-bonce
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Fig. 1. The perturbation function fp(t) given in (4).
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Fig. 2. The axial velocity at the bit level.

phenomenon, due to the repetitive loss of contact between the
bit and the rock, is well emphasized in these two plots.

On the other hand, the 3D representations of the axial
velocity and the axial displacement, presented in Figs. 4 and
5, provide information regarding the transient as well as the
global behavior of the axial vibrations system – a useful infor-
mation for evaluating the physical phenomenon, the vibrations
amplitude and their distributions along the normalized length
of the drillstring.

V. CONCLUSIONS

The paper considers the numerical and computational mod-
eling of the axial vibrations encountered in drilling operations
from the oil extraction industry. Mentioning that these pro-
cesses are the main cause of equipment failure and permanent
costs, the usefulness of such computational procedures as well
as of the computational solutions for a better understanding the
underlying phenomena is obvious.

0 5 10 15 20 25 30
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−0.04
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−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

t (s)

w
(1

,t)
 (

m
)

Fig. 3. The axial deviation at the bit level.
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ν (
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Fig. 4. 3D representation for the approximate solution νi(t), i = 0,10 of
the distributed variable v(x, t), x ∈ [0,1], i.e., the axial velocity along the
normalized length of the drillstring.

The drillstring vibrations can be described by different
mathematical models: lumped parameters model, distributed
parameters model, neutral-type time-delay model or combined
ODEs-PDEs model [4]. The computational procedure we used
here allows the analysis of such phenomena by considering
the system’s model with distributed parameters – described
by hPDEs with nonstandard BCs (see, for instance, [7], [11],
[15] and the references herein) – i.e. the mathematical model
most connected with the physical phenomenon.

From the last section we can see that the simulation results
are in accordance with the physical phenomena under con-
sideration. They give an insight regarding the effectiveness of
the computational procedure employed and its usefulness in
providing information tight related with the real phenomena.

To conclude, considering the system of drillstring axial
vibrations described by the infinite dimensional system (1)–
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Fig. 5. 3D representation for the approximate solution ωi(t), i = 0,10 of the
distributed variable w(x, t), x ∈ [0,1], i.e., the axial displacement along the
normalized length of the drillstring.

(2), the approximate solution obtained via this computational
procedure converges to the “real” (if analytical) solution and
also preserve its basic properties (existence, uniqueness and
continuous data dependence) as well as its Lyapunov stability.
These remarkable features of the procedure recommend it to
be used for modeling different other operation and control
scenarios in order to evaluate the system behavior under
various constraints for equipment damage avoidance.
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